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Changes in global (ocean and land) precipitation are among the
most important and least well understood consequences of climate
change. Increasing greenhouse gas concentrations are thought to
affect the zonal-mean distribution of precipitation through two basic
mechanisms. First, increasing temperatures will lead to an intensi-
fication of the hydrological cycle (“thermodynamic” changes). Sec-
ond, changes in atmospheric circulation patterns will lead to pole-
ward displacement of the storm tracks and subtropical dry zones
and to a widening of the tropical belt (“dynamic” changes). We
demonstrate that both these changes are occurring simultaneously
in global precipitation, that this behavior cannot be explained by in-
ternal variability alone, and that external influences are responsible
for the observed precipitation changes. While existing model exper-
iments are not of sufficient length to differentiate between natural
and anthropogenic forcing terms at the 95% confidence level, we
present evidence that the observed trends result from human activ-
ities.

Significance Statement
This study provides evidence that human activities are af-
fecting precipitation over land and oceans. Anthropogenic
increases in greenhouse gases and stratospheric ozone deple-
tion are expected to lead to a latitudinal intensification and
redistribution of global precipitation. However, detcting these
mechanisms in the observational record is complicated by
strong climate noise and model errors. By introducing new
methods, we establish for the first time that the changes in
land and ocean precipitation predicted by theory are indeed
present in the observational record, that these changes are un-
likely to arise purely due to natural climate variability, and
that external influences, probably anthropogenic in origin, are
responsible.
climate change | detection and attribution | climate modeling | precipitation

Water is the single most important natural resource, and
many societal and natural impacts of climate change

will depend on the response of the hydrological cycle to an-
thropogenic warming. Several large-scale changes in precipi-
tation, inferred from theoretical understanding, observations
and climate model predictions, are expected in a warming
world [1]. To first order, anthropogenic forcings are expected
to influence the hydrological cycle through two basic mech-
anisms. Thermodynamic changes follow from the Clausius-
Clapeyron (CC) relation, which dictates that saturation spe-
cific humidity increases roughly exponentially with temper-
ature, and from the vertical warming profile [2, 3]. In the
absence of other changes, this increase in tropospheric wa-
ter vapor will make wet regions wetter and dry regions drier.
Tropospheric water vapor is indeed increasing in response to
human activities [4], and there is evidence that this increase
has contributed to the moistening of wet regions and drying
of dry regions [5, 6, 7]. Existing large-scale studies [7, 8, 9]
are constrained over land, and thus neglect the 77% of pre-
cipitation that falls over oceans. Thermodynamic changes are
expected to be even stronger over ocean, because evaporation
is limited over dry land regions, and trends in ocean salinity
may indicate an intensification of the global hydrological cycle

[10]. However, no study has yet detected a signal of climate
change in global (land and ocean) precipitation.

Dynamic changes result from shifts in atmospheric circula-
tion, which in turn affect the horizontal and vertical transport
of water vapor. Numerous observational and model-based
studies have detected circulation shifts using various metrics
(see [11] and references therein). Models indicate that increas-
ing greenhouse gases, in the absence of other external forcing
terms, result in a poleward expansion of the tropical Hadley
cell and subtropical dry zones [12]. However, stratospheric
ozone depletion can also lead to similar circulation shifts [13]
and is likely the dominant contributor to the observed pole-
ward movement in Southern Hemisphere circulation patterns
in austral summer [14].

Any study of anthropogenic influences on global precipi-
tation must therefore consider both thermodynamic and dy-
namic mechanisms [15]. Detection of the climate change
signal is complicated by the muted response of global-mean
model precipitation to a temperature increase (compared to
the increase in water vapor) and the zonal nature of the
predicted changes (in both sign and displacement). Addi-
tional difficulties exist: first, it is well known that interannual
and interdecadal modes of natural variability such as the El
Niño/Southern Oscillation (ENSO) have considerable impacts
on precipitation, potentially obscuring any climate change sig-
nal. Second, global precipitation climatologies exhibit strong
spatial gradients, and model errors in representing the loca-
tions of these gradients are common. Consequently, averaging
precipitation over latitude bands and over many simulations
(as in [7, 9]), which is generally performed to reduce the influ-
ence of internal variability, may also obscure physically robust
simulated precipitation shifts. Finally, total precipitation is
also strongly influenced by orography, cloud formation, and
other small-scale processes that may not be well-simulated in
climate models.

In this paper, we argue that the presence of two physi-
cally robust, interlinked mechanisms necessitates the use of
multivariate detection techniques [16]. We propose a method
to simultaneously detect the intensification and latitudinal re-
distribution of global precipitation, test these changes against
model estimates of natural internal variability, and investigate
the roles of various relevant external forcings.
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Thermodynamic and Dynamic Indicators
We use the Global Precipitation Climatology Project (GPCP)
global observational dataset [17] spanning 1979-2012. In this
paper, we focus on boreal winter (December - February; here-
after DJF). We begin by smoothing observed DJF seasonal
precipitation climatologies so that spatial structure on scales
less than 5◦ is removed [18], Figure 1(a) shows the result of
this smoothing process for a single representative year (1990).
The smoothed, zonally averaged precipitation field has five
local extrema, excluding the polar-most points. Physically,
these correspond to (from left), the Southern Hemisphere
(SH) mid-latitude storm track peak, SH subtropical dry zone
trough, equatorial tropical peak, Northern Hemisphere (NH)
dry zone trough, and NH storm track peak. In the observa-
tions, the zonally averaged smoothed DJF precipitation has
exactly five local extrema in every year.

For each year, we calculate the latitude and intensity (i.e.,
the value of the smoothed precipitation field) at each ex-
tremum. We then calculate the six “half max” latitude points,
defined as the latitudes where the smoothed zonally averaged
precipitation is equal to the average of the nearest peak and
trough. This process yields 1) a dynamic time series Do(t)
with 11 spatial dimensions representing variations in peak,
trough, and half max latitudes, and 2) a thermodynamic time
series To(t) with 5 spatial dimensions representing variations
in the intensity at each peak and trough1. We then calculate
the anomalies D′o(t) (Figure 1b) and T ′o(t) (Figure 1c) relative
to 1980-2012 observed time means. This allows us to charac-
terize total changes in zonally averaged precipitation using
intensification and shifts simultaneously.

We apply the same methods to climate model precipita-
tion data from the 3rd and 5th phases of the Coupled Model
Intercomparison Project (CMIP3/CMIP5). In order to ob-
tain model data spanning the observational period, we splice
together the “historical” and “RCP 8.5” or “A1B” projection
experiments (SI Appendix: Section S2). For each model, we
perform the same smoothing and peak detection procedure.
Anomalies D′H(t) and T ′H(t) are now calculated with respect
to the model 1980-2012 average peak/trough and half max
latitude and intensity. This technique effectively preserves
and highlights the changes in intensity and displacement that
likely would be obscured in the multimodel average of zonal
mean precipitation. The procedure is then repeated for yearly
seasonal DJF climatologies in the CMIP5 pre-industrial con-
trol (PIC) runs, yielding control anomaly time series D′C(t)
and T ′C(t), which are then concatenated into a single time
series (SI Appendix: Section S1).

Fingerprints
We estimate the expected response of the dynamic and ther-
modynamic indicators to external forcing using a leading
“fingerprint” method [16, 19]. We begin by first averaging
the anomaly time series D′H(t) and T ′H(t) over an individual
model’s spliced historical and RCP8.5 realizations, and then
averaging over all models. Because internal variability is un-
correlated across models, this reduces the effect of climate
noise, yielding a clearer picture of the climate system’s re-
sponse to external forcing: the “fingerprint” of climate change.

To examine simultaneous thermodynamic and dynamic
changes, we calculate the leading multivariate empirical or-
thogonal function (EOF) Fm(D,T ), determined from the

cross-covariance matrix of the multimodel average D′H(t) and

T ′H(t) (Fig 2a). This fingerprint reveals that the multimodel
response of the climate system to external forcing is charac-
terized by two physical effects: a wet-get-wetter, dry-get-drier

pattern in precipitation intensity, and an attendant poleward
expansion in both hemispheres in zonal mean precipitation.
The associated first principal component (PC) (Figure 2b)
shows a distinct positive trend over the observational time
period. By contrast, Figure 2c shows the leading noise EOF
of the concatenated PIC runs, and Figure 2d the associated
PC. This EOF resembles the fingerprint Fm(D,T ) except, in-
stead of the poleward expansion observed in the forced case,
it displays the equatorial contraction expected in the zonal
mean response to ENSO [20, 21]. This suggests that ENSO,
the primary mode of natural variability, will not project well
onto the multivariate fingerprint Fm(D,T ). In other words,
using this fingerprint will improve signal-to-noise ratios by ef-
fectively filtering out climate noise (SI Appendix: Section S8).

Even though both thermodynamic and dynamic responses
are based in fundamental physics, and therefore robust across
multiple independent climate models, model errors may mask
even strong responses. The fingerprint, or characteristic re-
sponse to external forcing, is often obtained by averaging over
multiple models to eliminate internal variability. This re-
sponse may be diluted if models disagree on the locations
of important features. For example, two models projecting
strong subtropical drying trends may yield a smaller trend
when averaged if the model dry zones are sufficiently far apart.
Additionally, estimates of internal variability are often ob-
tained by concatenating the pre-industrial control runs of mul-
tiple models into a single long time series. However, variations
in the principal components of the concatenated control runs
may reflect model biases, not the amplitude of internal vari-
ability in the models. Previous attempts to control for model
errors have included coarse zonal averaging [7], focus on a sin-
gle region [5, 6], the use of a warping function for feature bias
correction [22], and the model-by-model approach described
in [23]. The method we employ (SI Appendix: Section S4)
is designed to capitalize on robust model features even in the
presence of feature biases. This method allows for the simul-
taneous detection of dynamic and thermodynamic changes in
zonal mean precipitation and demonstrates that these changes
are inconsistent with internal climate variability, as we now
show.

Detection of Changes
To determine if these changes in intensity and location are
present in the observations, we project the combined observed
anomaly fields D′O(t) and T ′O(t), normalized to unit variance,
onto the multivariate fingerprint Fm(D,T ). This projection
yields the spatial covariance between the observed pattern and
the fingerprint at time t and measures the similarity between
the observed and fingerprint patterns. If the externally forced
fingerprint is present and growing in the observations, then
the projection should increase with time and display an over-
all positive trend [19]. By contrast, the fingerprint should not
be expressed in precipitation changes originating from climate
noise alone, except by chance. We use this characteristic to
assess whether observed trends can be explained by internal
variability. To do so, we calculate the distribution of 33-year
non-overlapping trends in the concatenated model PIC projec-
tions onto the fingerprint Fm(D,T ). The standard deviation
of this distribution, denoted ε, constitutes a measure of inter-
nal climate variability. The signal-to-noise (S/N) ratio is then
obtained by dividing the observed trend by ε.

1The terminology used here represents an oversimplification: dynamical shifts can also contribute to
changes in precipitation intensity, while large-scale changes in precipitation may have consequences
for atmospheric circulation.
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If observed trends are incompatible with internal variabil-
ity, we can claim to have “detected” a signal. To “attribute” a
detected signal to external forcing, we need to assess whether
it is compatible with forced model results. While all models in
the CMIP5 archive incorporate the effects of ozone depletion
in addition to other human and natural forcings, only half of
those in the previous generation (CMIP3) do so [14]. This
allows us to determine the relative weight of GHG and ozone
contributions to changes in precipitation. We therefore calcu-
late the projections onto the fingerprint for the spliced CMIP5
models (ALL5), and spliced CMIP3 models including (ALL3)
or excluding (NoOz3) anthropogenic stratospheric ozone de-
pletion.

Figure 3a shows the projection of the observed dynamic
and thermodynamic indicators, normalized to unit variance,
onto the fingerprint Fm(D,T ). The corresponding signal-to-
noise ratio is shown in Figure 3b, as well as fitted probabil-
ity density functions for the PIC, ALL5, ALL3, and NoOz3
S/N ratios. A strong positive trend is evident in the ob-
served projection. As expected, the distribution of 33-year
non-overlapping control run trends is centered around zero.
The observed S/N ratio of 2.4 is well above the 5% signif-
icance threshold, suggesting that the observed co-variability
between location and intensity is incompatible with internal
climate noise alone. The ALL3 and ALL5 trends do not dif-
fer significantly from each other, nor do they differ from the
NoOz distribution (Table S1). The observed S/N ratio is lo-
cated near the mean of all three externally forced distribu-
tions. This indicates that the combined amplification and
shift in zonal precipitation is externally forced and present
even in the absence of anthropogenic ozone depletion.

To differentiate between natural and anthropogenic forc-
ing terms, we repeated the analysis over the shorter time
period spanned by the “historicalNat” experiments in the
CMIP5 database (1980-2005). These experiments incorpo-
rate solar variability and volcanic eruptions over the histor-
ical period, but contain no anthropogenic forcings. The re-
sults, now using 26-year trends, are shown in Figure 3c. The
observed trend lies in the tail of the historicalNat and pi-
Control distributions, but the S/N ratio is not significant at
the 95% confidence level. This is likely due to the shortened
period over which we calculate trends. However, the similar-
ity between the historicalNat trend distribution and the PIC
trend distribution, and the fact that these distributions sig-
nificantly differ from those obtained using anthropogenically
forced models, strongly suggest that natural external forcings
alone are unlikely to explain the observed changes.

Modeled Internal Variability
Detection and attribution studies rely on credible model es-
timates of internal variability [24, 25]. If models systemati-
cally underestimate the amplitude of natural climate noise,
this may lead to spurious detection due to artificially low
variability inflating the signal-to-noise ratio. It is therefore
important to compare variability in observations and spliced
CMIP5 historical/RCP8.5 runs. We first detrend modeled
and observed time series of projections onto the multivari-
ate Fm(D,T ) fingerprint and then apply a band-pass filter
to extract variability on scales between 5 and 20 years, as in
[25]. We also apply a high-pass filter to extract variability on
scales less than three years. Figure 4a shows the performance
of models at simulating medium and high-frequency variabil-
ity in the projection. Model estimates of decadal variability
are more important for D&A applications, and Figure 4a indi-
cates a systematic underestimate in decadal variability of the

multivariate projection. Does this lead to spurious detections
by inflating the S/N ratio? To investigate this possibility, we
consider only those models (FGOALS-s2 and MIROC-ESM-
CHEM) in which the ensemble average over realizations over-
estimates 5-20 year variability in the multivariate projection.
Restricting our analysis to these two models only, we find
(Figure 4b) that the observed trend is still highly unlikely to
occur in these model control runs at the 95% confidence level.

Comparisons with previous work
It is important to note that our detection method relies on the
covariance matrix measuring the relationship between the dy-
namic and thermodynamic indicators. In order to calculate
the fingerprint and projection, we normalize each indicator
to unit variance, thus removing information about the ampli-
tude of variability in the individual components. Our finger-
print therefore measures the degree of synchronicity between
variations in the thermodynamic and dynamic indicators, not
their respective amplitudes. This means it is possible to de-
tect a trend in the projection onto Fm(D,T ) in the absence
of trends in either Do(t) or To(t), if thermodynamic changes
and dynamic changes increasingly occur in tandem.

It is, of course, possible to calculate single-variable fin-
gerprints to examine changes in Do(t) (SI Appendix, Section
S6.1) or To(t) (SI Appendix, Section S6.2) separately. The
noise filtering aspect of the multivariate fingerprint is lost in
the single-variable cases: natural variability, ENSO in par-
ticular, will project onto these fingerprints and decrease the
signal-to-noise ratio (SI Appendix: Figure S8). However, con-
sidering each variable separately allows for comparisons with
previous studies that have detected changes in the hydrologi-
cal cycle or atmospheric circulation.

We find, considering the dynamical indicator alone, that
the observations do show a poleward shift in the main features
of global precipitation. As previous authors [14] have found,
the observed trend is much larger than the trends found in
forced model runs, although including anthropogenic strato-
spheric ozone depletion reduces the discrepancy.

Although other studies [7, 26] have found evidence for
thermodynamic changes in the hydrological cycle, we do not
detect a trend in the thermodynamic indicator alone. This is
due to differences in datasets and time periods considered (SI
Appendix: Figures S4-6). Our method is designed to detect
changes in the zonal-mean structure of global precipitation;
other metrics, designed to capture more local changes, have
found evidence for regional thermodynamic changes [27] that
exceed model predictions.

Conclusions
In this paper, we have introduced a simple new method to
track thermodynamic and dynamic changes in global precip-
itation. This method identifies physical effects that are ro-
bust across multiple models, even in the presence of model
errors. We have identified a fingerprint pattern that char-
acterizes the simultaneous response of precipitation location
and intensity to external forcing and acts as a noise filter. Ob-
served changes in this multivariate response are incompatible
with our best estimates of natural variability and consistent
with model predictions of externally forced change. The syn-
chronicity of these changes is key, however: considering either
change in isolation does not lead to detection and attribution
(SI Appendix: Figure S3). By focusing on both the underlying
mechanisms that drive changes in global precipitation, and by
restricting our analysis to the large scales where we have some
confidence in models’ ability to reproduce the current climate,

Footline Author PNAS Issue Date Volume Issue Number 3



we have shown that the changes observed in the satellite era
are externally forced, and likely to be anthropogenic in nature.
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H, Maier-Reimer, E, & Wigley, T. M. (1995) Ocean variability and its influence on

the detectability of greenhouse warming signals. Journal of Geophysical Research 100,

10693–10.

17. Adler, R. F, Huffman, G. J, Chang, A, Ferraro, R, Xie, P.-P, Janowiak, J, Rudolf, B,

Schneider, U, Curtis, S, Bolvin, D, et al. (2003) The version-2 global precipitation

climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of

Hydrometeorology 4, 1147–1167.

18. Marvel, K, Ivanova, D, & Taylor, K. (2013) Scale space methods for climate model

analysis. Journal of Geophysical Research: Atmospheres.

19. Santer, B. D, Painter, J. F, Mears, C. A, Doutriaux, C, Caldwell, P, Arblaster, J. M,

Cameron-Smith, P. J, Gillett, N. P, Gleckler, P. J, Lanzante, J, et al. (2013) Iden-

tifying human influences on atmospheric temperature. Proceedings of the National

Academy of Sciences 110, 26–33.

20. Lu, J, Chen, G, & Frierson, D. M. (2008) Response of the zonal mean atmospheric

circulation to El Niño versus global warming. Journal of Climate 21, 5835–5851.

21. Seager, R & Naik, N. (2012) A mechanisms-based approach to detecting recent

anthropogenic hydroclimate change. Journal of Climate 25, 236–261.

22. Levy, A. A, Ingram, W, Jenkinson, M, Huntingford, C, Hugo Lambert, F, & Allen, M.

(2013) Can correcting feature location in simulated mean climate improve agreement

on projected changes? Geophysical Research Letters 40, 354–358.

23. Scheff, J & Frierson, D. (2012) Twenty-first-century multimodel subtropical precipi-

tation declines are mostly midlatitude shifts. Journal of Climate 25, 4330–4347.

24. Allen, M. R & Tett, S. F. (1999) Checking for model consistency in optimal finger-

printing. Climate Dynamics 15, 419–434.

25. Santer, B, Mears, C, Doutriaux, C, Caldwell, P, Gleckler, P, Wigley, T, Solomon, S,

Gillett, N, Ivanova, D, Karl, T, et al. (2011) Separating signal and noise in atmo-

spheric temperature changes: The importance of timescale. Journal of Geophysical

Research: Atmospheres (1984–2012) 116.

26. Wentz, F. J, Ricciardulli, L, Hilburn, K, & Mears, C. (2007) How much more rain will

global warming bring? Science 317, 233–235.

27. Allan, R. P, Soden, B. J, John, V. O, Ingram, W, & Good, P. (2010) Current changes

in tropical precipitation. Environmental Research Letters 5, 025205.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



0.4
0.2
0.0
0.2
0.4

(b): Intensity Anomalies (mm/day)

0.4
0.2
0.0
0.2
0.4

1.0

0.5

0.0

0.5

1.0

0.4
0.2
0.0
0.2
0.4

1980 1985 1990 1995 2000 2005 2010

0.4
0.2
0.0
0.2
0.4

T
′ 2
(t

)
T
′ 4
(t

)
T
′ 6
(t

)
T
′ 8
(t

)
T
′ 10
(t

)

4
2
0
2
4

(c): Latitude Anomalies ( ◦ )

10

5

0

5

10

4
2
0
2
4

10

5

0

5

10

10

5

0

5

10

4
2
0
2
4

4
2
0
2
4

4
2
0
2
4

4
2
0
2
4

4
2
0
2
4

1980 1985 1990 1995 2000 2005 2010
10

5

0

5

10

D
′ 1
(t

)
D
′ 2
(t

)
D
′ 3
(t

)
D
′ 4
(t

)
D
′ 5
(t

)
D
′ 6
(t

)
D
′ 7
(t

)
D
′ 8
(t

)
D
′ 9
(t

)
D
′ 10
(t

)
D
′ 11
(t

)

90 ◦ S 60 ◦ S 30 ◦ S 0 ◦ 30 ◦ N 60 ◦ N 90 ◦ N

Latitude

0

1

2

3

4

5

6

S
m

o
o
th

e
d
 P

re
ci

p
it

a
ti

o
n
 (

m
m

/d
a
y
)

1

2
3

4

5

6

7

8

9

10

11

(a): Smoothed Zonal Average P

Fig. 1. Illustration of the methods used to generate thermodynamic and dynamic indicators.

(a) Smoothed, zonally averaged boreal winter precipitation in the observational GPCP dataset

for 1990. Local extrema are marked in dark blue (mid-latitude storm tracks), red (subtropical

dry zones), and green (equatorial tropical peak). Cyan, purple, and yellow circles indicate

”half-max” points: latitudes where the smoothed zonally averaged precipitation is equal to the

average of neighboring extrema. (b) Observed peak ”intensity” anomalies (mm/day) in the

observational dataset. Best-fit trends obtained by linear regression are shown as black dotted

lines. (c) Observed peak and halfmax point location anomalies in the observational dataset.

Best-fit trends are drawn as black dotted lines.
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(c): PI Control EOF 1 (38%)

10
00

30
00

50
00

70
00

Year

5

0

5

T
e
m

p
o
ra

l 
a
m

p
lit

u
d
e

(d): PI Control PC 1

Fig. 2. The multivariate “fingerprint” of forced precipitation change and the primary noise mode. (a) The fingerprint Fm(D,T ), or leading eigenvector of the cross-

covariance matrix of the multimodel average D′H(t) and T ′H(t). Both time series are scaled to unit variance before input. Thermodynamic EOF loading is plotted on the

vertical axis, while the direction and magnitude of dynamic EOF loading are displayed as arrows. The horizontal axis is the multimodel average latitude of detected peak/trough

and halfmax points. For visual clarity the arrows exaggerate the actual shift in latitude by a factor of 50. This EOF explains 49% of the total variance. (b) The principal

component associated with the fingerprint Fm(D,T ). (c) The leading noise eigenvector of the cross-covariance matrix of the concatenated model PIC runs D′C(t) and

T ′C(t). As in (a), the y-axis shows thermodynamic EOF loading, while arrows, scaled by a factor of 50, show dynamic EOF loading. The x-axis shows the multimodel average

latitude of detected points. This EOF explains 38% of the total variance. (d) The principal component associated with the leading noise EOF.
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(a): Obs Projections on Fm (D,T)
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(b): Model Projections on Fm (D,T) (33-year trends)
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(c): Model Projections on Fm (D,T) (26-year trends)
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Fig. 3. (a) The projection (gray) of the observed thermodynamic and dynamic indicators onto the multivariate fingerprint, and best-fit line (red). (b) Best-fit normal

probability distribution functions (PDFs) for trends in the projection of model data onto the fingerprint. All trends have been normalized by ε, the standard error of the control

distribution to obtain signal-to-noise ratios. The blue line shows the PDF of non-overlapping 33-year trends from the concatenated model PIC runs. The green line shows the

PDF for individual CMIP5 historical/RCP8.5 model projection trends. Yellow/cyan lines show the PDF for CMIP3 models excluding/including stratospheric ozone depletion.

For all PDFs, the two-sided 95% confidence intervals are shaded. The red line indicates the observed S/N ratio, and the shaded red box ± one standard error in estimating the

trend from assumed independent annual samples. The observed S/N ratio, located near the mean of the forced distributions, is incompatible with internal variability at 95%

confidence. (c) As in Figure 3b, but for 26-year trends and including “historicalNat” experiments. The observed S/N ratio is located near the mean of the forced distributions

and in the tail of both control and historicalNat distributions.
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(a): Projection onto Fm (D,T)
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(b): High Decadal Variability Models Only
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Fig. 4. (a) Comparison of modeled and observed variability in the multivariate projection onto the fingerprint Fm(D,T ). (b) Normalized histograms of trends in the

multivariate projection onto the fingerprint Fm(D,T ) for the control runs (blue) and spliced historical and RCP8.5 runs, considering only models that overestimate decadal

variability in the projection (”high decadal variability” or HDV models.)
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